- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Cotrufo, M_Francesca (1)
-
Ernakovich, Jessica (1)
-
Foster, Erika (1)
-
Frey, Serita (1)
-
Georgiou, Katerina (1)
-
Grandy, A_Stuart (1)
-
Malhotra, Avni (1)
-
Reich, Peter_B (1)
-
Rocci, Katherine_S (1)
-
Schlerman, Else_P (1)
-
Wieder, William_R (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract In the past few decades, there has been an evolution in our understanding of soil organic matter (SOM) dynamics from one of inherent biochemical recalcitrance to one deriving from plant‐microbe‐mineral interactions. This shift in understanding has been driven, in part, by influential conceptual frameworks which put forth hypotheses about SOM dynamics. Here, we summarize several focal conceptual frameworks and derive from them six controls related to SOM formation, (de)stabilization, and loss. These include: (a) physical inaccessibility; (b) organo‐mineral and ‐metal stabilization; (c) biodegradability of plant inputs; (d) abiotic environmental factors; (e) biochemical reactivity and diversity; and (f) microbial physiology and morphology. We then review the empirical evidence for these controls, their model representation, and outstanding knowledge gaps. We find relatively strong empirical support and model representation of abiotic environmental factors but disparities between data and models for biochemical reactivity and diversity, organo‐mineral and ‐metal stabilization, and biodegradability of plant inputs, particularly with respect to SOM destabilization for the latter two controls. More empirical research on physical inaccessibility and microbial physiology and morphology is needed to deepen our understanding of these critical SOM controls and improve their model representation. The SOM controls are highly interactive and also present some inconsistencies which may be reconciled by considering methodological limitations or temporal and spatial variation. Future conceptual frameworks must simultaneously refine our understanding of these six SOM controls at various spatial and temporal scales and within a hierarchical structure, while incorporating emerging insights. This will advance our ability to accurately predict SOM dynamics.more » « less
An official website of the United States government
